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Abstract. Recent experimental and theoretical work shows that liquid-crystalline elastomers and
gels have a highly mobile axis of anisotropy. Despite being nominally elastic solids, they also show
features of fluids, such as the effect of soft elasticity. Work over the last few years is reviewed
and some of the most important discoveries, as well as the outstanding problems in this field, are
highlighted. We examine the unusual mechanical properties of nematic and smectic rubbers, their
randomly disordered equilibrium textures, some aspects of dynamics and mechanical relaxation
and the effect of uniform chiral piezoelectricity in amorphous polymer networks.

1. Introduction

Liquid-crystalline elastomers (LCE) and gels continue to fascinate scientists and engineers
with the combination of physical properties that places them in a separate category from
any other material. The core of this uniqueness lies in the orientational symmetry breaking
and the resulting coupling of rubber elasticity and liquid-crystalline degrees of freedom. In
ordinary elastic solids the deformations are created by relative movement of the same atoms (or
molecules) that form the bonded low-symmetry lattice. Hence, when the deformation is small,
the lattice symmetry is preserved and one obtains an ordinary elastic response (although often
anisotropic); large deformations destroy the lattice integrity and simply break the material.
In contrast, in elastomers and gels the macroscopic elastic response arises from the entropy
change of polymer chains on relative movement of their cross-linked end points, which are
relatively far apart. What happens to chain segments on a smaller length scale is a relatively
independent matter. For instance, nematic order can be established within these chains and its
director can rotate, in principle, independently of deformation of the cross-linking points. Such
an internal degree of freedom within and coupled to the elastic body constitutes what is known
as the Cosserat medium: the relative movement of cross-linking points provides elastic strains
and forces, while the director rotation causes local torques and couple stresses. However, the
liquid-crystalline elastomer is even richer than notional Cosserat solids because (again due to
the entropic nature of long polymer chains connecting the cross-linking points) rubbers are
capable of very large shear deformations (being at the same time essentially incompressible).
Hence, one expects a variety of unique physical properties, especially in the region of large
deformations. Indeed, some such properties have been reported in recent years.

It is important to realize that a unique physical system, such as liquid-crystalline elastomers
and gels, should be looked upon from the point of view of equally unique applications. Because
of their slow dynamics and the high fields required to overcome the elastic resistance, LCE
are poor for electro-optical display devices, which is one of the main thrusts in conventional
liquid crystals. Because of their chemical complexity, they are not optimal for shoe soles and
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tennis balls (although for ‘high-tech’ rubber tyres this is perhaps an open question). What LCE
seem to be made for is the manipulation of the axis of optical birefringence by mechanical
means. Unusual non-symmetric elasticity, with very low shear modulus and high impedance,
is another characteristic physical property still waiting for an appropriate application system.
The third prospective area is rubbers with piezoelectric and non-linear optic properties which,
again in contrast to traditional crystalline and ceramic materials, allow large deformations and
manipulation of polarization by mechanical means.

After the concept of nematic elastomers was put forward by de Gennes in 1975 [1] and the
first side-chain liquid-crystalline polymer was cross-linked into elastomer by Finkelmannet al
in 1981 [2], the initial research has been mainly focusing on synthetic and characterization
work. The reviews [3–6] give a comprehensive picture of that period. In recent years the
emphasis has been gradually shifting towards studies of new physical properties and the
geography of research into liquid-crystalline elastomers has been significantly broadened.

1.1. Synthesis

For many years the prevailing type of LCE-forming materials were the side-chain liquid-
crystalline polymers. Since the early work of Ringsdorf and Finkelmann, polyacrylate back-
bones with a number of mesogenic pendants have been used by different groups [7–9] to
produce a variety of LCE. However, it has been quickly recognized that polyacrylate-based
polymer chains have certain practical disadvantages, in particular the high glass transition
temperatureTg > 50 ◦C and low backbone anisotropy. Side-chain liquid-crystalline polymers
based on siloxane backbones have shown more dramatic mechanical properties due to a much
higher chain anisotropy and are conveniently liquid crystalline at room temperature (with
Tg 6 5 ◦C). Methods of cross-linking have varied from chemical, using copolymerization
with a small proportion of reactive groups on a chain and adding bi- or tri-functional cross-
linking agents [10, 11], to radiation processes using UV light with photoinitiators [12] or
gamma radiation [13].

Much less synthetic work has been done on networks of main-chain mesogenic polymers,
apart from the long history of mesogenic epoxy resins prepared over the years by Carfagna
et al [14] and Oberet al [4]. In the last 2–3 years, however, there has been a noticeable
surge of activity in this area. An interesting group of rigid-rod polymers, somewhat echoing
the activity in stiff-chain Kevlar-type fibres [15], but showing remarkable liquid-crystalline
properties in a swollen state, were prepared by Zhaoet al [16] (polyisocyanate chains were
cross-linked into networks by hydrosilation reaction). The Cornell group has produced
lightly cross-linked (i.e. rubbery without swelling) nematic and smectic elastomers based
on the rod-like mesogenic monomers connected via flexible spacers [17, 18]. Finkelmann
and co-workers have prepared another group of nematic main-chain elastomers based on
semi-flexible polyether chains [19]. In all of these new reports the synthetic work was
accompanied by important physical experiments, characterizing the stress–strain behaviour
and the stress-induced alignment. One expects, and indeed finds, dramatic elastic effects (in
the range of strains up to 3–400%) due to the high chain anisotropy of main-chain mesogenic
polymers.

Another interesting lyotropic LCE system (showing the mesogenic behaviour in response
to changes in solvent concentration, water in this case) has been prepared in Freiburg [20].
The material is based on the lamellar phase of side-chain polysurfactant. This work explores
a concept of permanently tethering the layers via cross-linking across them, either through the
hydrophobic polymer backbone or through hydrophilic side-chains.
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1.2. Physical properties

One of the main difficulties preventing a widespread effort in experimental studies of LCE
is their sparse availability. Because a complicated synthesis is required, the cross-linked
(or cross-linkable) liquid-crystalline polymers are not available commercially and are only
produced in the research laboratories mentioned in the previous section. Nevertheless,
the last few years have seen a substantial increase in experimental research. One factor
contributing to this increase is the growing ability of synthetic groups to perform sophisticated
physical experiments: many of the remarkable physical properties have been discovered in
the laboratories where the materials have been prepared (see, for instance, [21–23] described
below). Another factor is the increasing ease of preparing basic LCE systems, which allows
some more traditional physics research groups to enter the field; see, for example, [24, 25].
One way or another, many characteristic physical properties of LCE have been studied over
the years. Below, we shall examine some of the most important recent discoveries related to
structure and mechanical response, electric field and polarization properties, and dynamical
effects.

In the next section we shall recall the main features of Cosserat-like nematic rubber
elasticity, using the limit of continuum linear theory to illustrate the similarities to and
differences from the conventional symmetric elasticity of crystalline solids. This level of
approximation, assuming small deformations, is not very characteristic of a rubber capable
of undergoing very large strains. However, it serves the purpose of illustration and, besides,
is fully applicable to a number of physical effects naturally involving small deformations,
e.g. acoustic waves, or thermal fluctuations.

The following sections describe recent advances in several key areas of physical properties
of LCE. The theoretically predicted effect of soft elasticity, a remarkable phenomenon when
there is no rubber-elastic energy in response to certain sets of strains, have been confirmed
by several experimental findings. The role of quenched random disorder in forming the
equilibrium polydomain textures and in controlling the slow dynamics of deformations in
LCE has become clearer in the last few years, making an attractive parallel with a number of
glass systems. The additional one-dimensional translational symmetry breaking in smectic or
lamellar elastomers and gels makes them equally puzzling and provocative physical systems,
with a characteristic two-dimensional entropic rubber elasticity within the layers and a very
rigid solid-like response to deformations along the layer normal. Finally, much progress has
been made recently in theoretical and experimental studies of piezoelectric effects in chiral
LCE and we shall review the main points of principle in this area.

2. Nematic rubber elasticity

Rubber-elastic response to deformations of a polymer network stems from the entropy change
when the number of conformations allowed for the chains is reduced on stretching their end-
to-end distance terminated by network cross-links. Within the simplest affine deformation
approach one regards the change in each chain end-to-end vectorR as R′ = λ · R,
when a deformation characterized by a Cauchy strain tensorλij is applied to the whole
sample. Assuming that the chain connecting the two cross-links is long enough, the Gaussian
approximation for the number of its conformations gives for the free energy (per chain)

Fch = −kT lnW(R′) ' kT 1

a2N
(λT · λ)ijRiRj

wherea is the step length of the chain random walk andN the number of such steps. In order
to find the total free energy of all chains affinely deforming in the network, one needs to add the
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contributionsFch(R) with statistical weighting to find a chain with a given initial end-to-end
distanceR in the system. This procedure, called quenched averaging, produces the average
〈RiRj 〉 ' 1

3a
2Nδij in the expression forFch. The resulting rubber-elastic free energy (per

unit volume) isFel = 1
2nckT (λ

T : λ), with nc a number of chains per unit volume of the
network. This is a remarkably robust expression, with many seemingly relevant effects, such
as the fluctuation of cross-linking points, only contributing a small quantitative change in the
prefactor. The value of the rubber modulus is found on expanding the Cauchy strain tensor in
small deformations, say,λzz = 1+ε, and obtainingFel ' 1

2µε
2 withµ = nckT . This modulus,

having its origin in the entropic effect of reduction of conformational freedom on polymer chain
deformation, is usually so much smaller than the bulk modulus (determined by the enthalpy of
compressing the dense polymer liquid) that the rubber is considered as deforming at constant
volume. This constraint leads to the familiar expressionFel = 1

2nckT (λ
2 + 2/λ) where one

has assumed that the imposed extensionλzz = λ is accompanied by symmetric contraction in
both transverse directions,λxx = λyy = 1/

√
λ, due to the incompressibility.

When the chains forming the rubbery network are liquid crystalline, their end-to-end
distance distribution becomes anisotropic. In the case of a simple uniaxial nematic one obtains
〈R‖R‖〉 = 1

3`‖L and〈R⊥R⊥〉 = 1
3`⊥L, with L = aN the chain contour length and̀‖/`⊥

the ratio of average chain step lengths along and perpendicular to the nematic director. In the
isotropic phase one recovers`‖ = `⊥ = a. The uniaxial anisotropy of polymer chains has a
principal axis along the nematic directorn, with a prolate (̀‖/`⊥ > 1) or oblate (̀‖/`⊥ < 1)
ellipsoidal conformation of the polymer backbone. The ability of this principal axis to rotate
independently under the influence of network strains makes the rubber-elastic response non-
symmetric (see the review [5] for details of the molecular theory of nematic rubber elasticity),
so we have

Fel = 1

2
µTr(λT · `−1

θ
· λ · `

0
) +

1

2
B̃
(
Det[λ] − 1

)2
(1)

with ` the uniaxial matrices of chain step lengths before (0) and after the director has rotated
by an angleθ :

`ij = `⊥δij + [`‖ − `⊥]ninj .

The last term, the additional bulk-modulus contribution independent of the configurational
entropy of polymer chains, is determined by molecular forces resisting the compression
of a molecular liquid,B̃ ∼ 1010–1011 J m−3, much greater than the typical value of the
rubber modulusµ ∼ 105 J m−3. This large energy penalty constrains the value of the
strain determinant, Det[λ] ≈ 1 (which, in other words, means that the material is physically
incompressible).

Note that the Cauchy strain tensorλ no longer enters the elastic energy in the symmetric

combinationλT · λ, but is now ‘sandwiched’ between the matrices` with different principal
axes. This means that antisymmetric components of strain will now have a non-trivial physical
effect, in contrast to the case for isotropic rubbers and, more crucially, to the case for elastic
solids with uniaxial anisotropy. There, the anisotropy axis is immobile and the response is
anisotropic but symmetric in stress and strain. The uniqueness of nematic rubbers stems from
the competing microscopic interactions and the difference in characteristic length scales: the
uniaxial anisotropy is established on a small (monomer) scale of the nematic coherence length,
while the strains are defined (and the elastic response is arising) on a much greater length scale
of the polymer chain end-to-end distance (see figure 1).

The similarities to, and areas of contrast with the conventional uniaxial elasticity are more
apparent on the level of linear continuum description, when only small deformations and small
director rotations are considered. Introducing the deformation tensorvij as the gradient of the
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(a) (b) (c)

Figure 1. The relation between the equilibrium chain shape and deformations in LCE. When
the network of initially isotropic chains, forming a spherical gyration shape (a), is brought into
the uniform nematic phase (b), a corresponding spontaneous deformation of the sample occurs
in proportion to the backbone anisotropy,λm ≈ (`‖/`⊥)−1/3. An example of soft deform-
ation (c), when rotating anisotropic chains, can affinely accommodate all strains (a combination of
compression along the initial director, extension across it and a shear in the plane of the director
rotation), not causing any entropic rubber-elastic response.

local displacement vectorv (vij = ∇ivj , with the Cauchy strainλij = δij + vij taken to be
incompressible, with Det[λ] = 1), one obtains

F = 1

2
µ0(n · ε̃ · n)2 +

1

2
µ1[n× ε̃× n]2 +

1

2
µ2(n · ε̃× n)2 (2)

+
1

2
D1[(Ω− ω)× n]2 +

1

2
D2n · ε̃ · [(Ω− ω)× n] +

1

2
K(∇n)2

whereε̃ is the symmetric traceless part of the deformation tensor,1
2(v+vT)− 1

3δ div v, the only
relevant variable in the conventional linear elastic theory†. Two vectors,Ω andω, describe
the rotational contributions of deformation (Ω = 1

2 curlv, the antisymmetric part ofv) and
the nematic director (ω = [n× δn]). The unit vectorn in (2) represents the axis of uniaxial
anisotropy before deformation and should be regarded as fixed at this level of approximation,
except in the traditional nematic Frank-elasticity contribution, the last term in the continuum
free-energy density (2), schematically presented in the one-constant approximation. Clearly,
only the uniformrelative rotationof the nematic and rubber-elastic subsystems contributes to
the free energy (2) via the coupling termsD1 andD2, first written down phenomenologically
by de Gennes [26]. Applying a particular molecular model, equation (1) [5], one finds the
values of the relevant constants:

µ0 = µ1 = 2nckBT µ2 = nckBT
(
`2
‖ + `2

⊥
`‖`⊥

)2

D1 = nckBT
(
`2
‖ − `2

⊥
`‖`⊥

)2

D2 = nckBT
`2
‖ − `2

⊥
`2
⊥

.

(3)

Appropriately, the relative-rotation coupling constants must vanish in the isotropic phase, at
`‖ = `⊥. Many molecular models of nematic polymer chains relate the average backbone
anisotropy(`‖/`⊥ −1) to the local nematic order parameterQ, defined as the thermodynamic
average of mesogenic monomer long axes〈 32(u ·n)2− 1

2〉. One then finds thatD1 must scale
asµQ2 because the penalty on relative rotation∼(Ω− ω)2 cannot depend on the sign ofQ,
i.e. on whether the polymer chains are prolate or oblate. In contrast,D2 must scale asµQ

† The symbolic second-rank tensor [n× ε× n] is shorthand for the matrix productAαβ = εαjknj εklnmεmlβ (sym-
metric,Aαβ = Aβα). Similarly, the symbolic vector(n · ε× n) is shorthand for the matrix productnkεklnmεmlα .
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because the signs of the director rotations induced by symmetric shearε are different in prolate
and oblate elastomers:

D1 ∝ (`‖ − `⊥)2 ∼ Q2 and D2 ∝ (`‖ − `⊥) ∼ Q.
Two main consequences of the coupling between the elastic modes of the polymer net-

work and the rotational modes of the nematic director are the reduction of the effective elastic
response and the penalty on the director fluctuations. The first effect has been given the name
‘soft elasticity’ and is the result of integrating out (minimizing over) the director fluctuations
δn in the expression forFel in (2). In some cases this may even result in the total elimination
of elastic response, e.g. the renormalized shear modulusµ̃2 → 0, and reflects the ability of
anisotropic polymer chains to rotate their long axis to accommodate some imposed elastic
deformations without changing their shape. If one instead chooses to focus on the director
modes in a nematic elastomer with a fixed (constrained) shape, the coupling termsD1 andD2

provide a large energy penalty for uniform director rotationsδn (with respect to the elastically
constrained network). This penalty, which appears as a mass term in the expression for the
mean square director fluctuation

〈|δnq |2〉 ' kBT

V (Kq2 + D̃)
with K the Frank constant, results in the suppression of fluctuations and the related scattering
of light from a nematic elastomer. In contrast to optically turbid ordinary liquid nematics,
where light is scattered by long-wavelength director fluctuations, aligned monodomain nematic
rubber is totally transparent. However, when the elastic deformations in the network are not
constrained and are free to relax, there are certain combinations of polarization and wave
vectors of director fluctuations (corresponding to the soft-deformation modes) for which the
‘effective mass’D̃ vanishes and the fluctuation spectrum should appear as in ordinary liquid
nematics [27].

3. Soft elasticity and stripe domains

For several years it was understood that if a sample of monodomain, uniformly aligned
nematic elastomer (which usually implies that it has been cross-linked in the aligned nematic
phase [8,10]) is stretched along the axis perpendicular to the nematic directorn̂0, the director
will switch and point along the axis of uniaxial extension. The early theory (ignoring the effect
of soft elasticity) [28] has predicted and the experiment on polyacrylate LCE [29] reported
that this switching occurs in an abrupt discontinuous fashion when the natural long dimension
of anisotropic polymer chains can fit into the new shape of the sample, much extended in the
perpendicular direction. However, in 1995, the same experiment performed on a polysiloxane
LCE [21] has shown an unexpected stripe domain pattern. Further investigation has proven
that the nematic director rotates continuously fromn̂0 towards the new perpendicular axis,
over a substantial range of deformations, but the direction of this rotation alternates in semi-
regular stripes several microns in width oriented along the stretching direction; see figure 2(a).
Later, the same textures were observed by other groups and for different materials, including
polyacrylates [11, 30], although there also is an unambiguous report of the single-director
switching mode [31].

Theoretical description of stripe domains [32] has been successful in describing diverse
and complicated physical effects of the Cosserat-like elastic medium at large deformations in
a non-uniform texture. One of the results gives the director angle variation with strain:

θ(λ) = ±arcsin

[
`‖

`‖ − `⊥

(
1− λ

2
c

λ2

)]1/2

(4)
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(a)

(b)

(c)

Figure 2. Stripe domains in nematic LCE. (a) A schematic picture of alternating domains with±θ
on stretching the sample perpendicular to the nematic directorn; the inset shows a microscopic
image of stripes between crossed polars. (b) The director rotation angleθ(λ) in each domain—the
theoretical curve, equation (4), and several different experiments collapsed on it by rescaling of
variables. (c) An associated stress–strain curve showing the soft-elasticity plateau in a sample of
polysiloxane LCE with flexible tri-functional cross-links. Note a small hump at the beginning of
the soft region, which is due to an extremely slow stress relaxation at the moment when the stripe
domains are being formed by negotiating between local shears and mechanical constraints.
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with only one free parameter, the threshold strainλc. The backbone chain anisotropy`‖/`⊥,
which enters the theory, is an independent experimentally accessible quantity related, e.g. to
the spontaneous shape change of LCE on heating it into the isotropic phase,λm ≈ (`‖/`⊥)1/3
in figure 1. This allowed the data for the director angle, obtained in different experiments on
many different materials, to be collapsed onto the same master curve (figure 2(b)), spanning the
whole range of non-linear deformations. More importantly, the good correspondence between
the theory and experiment became the first unambiguous proof of the soft-deformation regime.

The physical reason for the stretched LCE breaking into stripe domains with opposite
director rotations,±θ(λ), becomes clear when one recalls the idea of soft elasticity [27, 33].
The polymer chains forming the network are anisotropic, in most cases having the average
shape of a uniaxial prolate ellipsoid; see figure 1. If the assumption of affine deformation is
made, the strain applied to the whole sample is locally applied to all network strands. The
origin of (entropic) rubber elasticity is the corresponding change of shape of the chains, away
from their equilibrium shape frozen at network formation, which results in the reduction in
entropy and rise in the elastic free energy. However, the nematic (e.g. prolate anisotropic)
chains may find another way of accommodating the deformation: if the sample is stretched
perpendicular to the directorn (the long axis of the chain gyration volume), the chains may
rotate theirundeformedellipsoidal shapes—thus providing an extension, but necessarily in
combination with simple shear—and keep their entropy constant and elastic free energy zero!
This, of course, is unique to nematic elastomers: isotropic chains (with spherical shape) have
to deform to accommodate any deformation. Mathematically, Olmsted [27] has shown that
there is a continuous set of such soft deformations, which by appropriately combining strains
and director rotations can make the elastic response vanish, expressed by the matrix product

λ = `1/2
θ
· V · `−1/2

0

where thè are the step-length tensors before and after the director rotation andV is an arbitrary
unitary matrix. The physical explanation of stripe domains is now clear: the stretched LCE
attempts to follow the soft-deformation route to reduce its elastic energy, but this requires a
shear deformation which is prohibited by rigid clamps on two opposite ends of the sample;
figure 2(a). The solution is to break into small stripes, each with a completely soft deformation
(and a corresponding shear) but with the sign of director rotation (and thus also the shear)
alternating between the stripes. Then there is no global shear and the system can lower its
elastic energy in the bulk, although it now has to pay the penalty for domain walls and for
the non-uniform region of deformation near the clamps. The balance of gains and losses
determines the domain size.

The argument above seems to provide a reason for the threshold strainλc, which is
necessary to overcome the barrier for creating domain walls between the ‘soft’ stripes.
However, it turns out that the numbers do not match. The threshold provided by domain
walls alone should be very small (the strain being a fraction of one per cent), whereas most
experiments have reportedλc ∼ 1.1 or more. This caused theoreticians to develop a whole
new concept of what is now called ‘semi-softness’ of LCE. The idea is that, due to several
different microscopic mechanisms [34], a small addition to the classical nematic rubber-elastic
free energy is breaking the symmetry required for the soft deformations:

F ' 1

2
µ
[
Tr(λT · `−1

θ
· λ · `

0
) + α(δn +n · λ× δn)2

]
(5)

(usuallyα � 1). The soft-elastic pathways are still representing the low-energy deformations,
but the small penalty∼αµ provides the threshold for stripe domain formation and also makes
the slope of the stress–strain soft-elastic plateau small but non-zero; see figure 2(c).
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Regardless of the small ‘complications’ of semi-soft corrections, the main advance in
identifying the whole class of special low-energy soft deformations in LCE and proving their
existence by direct experiment is worth noting.

4. Random disorder in nematic networks

It was recognized long ago that, if no special precautions are taken to preserve the monodomain
director alignment in the network, the LCE always form with a highly disordered director
texture. Although this seems similar to the case for liquid-crystalline polymers and even to that
for low-molar-mass liquid crystals, the major difference is that this disordered director texture
represents a thermodynamic equilibrium in elastomers. If such a material is made uniformly
aligned by application of an external field or mechanical stretching, it always returns back to
its disordered state after the external aligning influence is removed.

The concept of quenched sources of random orientational disorder, represented in LCE by
network cross-links imposing a local field on the director in their immediate vicinity, has been
put forward to account for the resulting equilibrium ‘polydomain’ state [35]. Polydomain is
put in quotes because, similarly to the case for the analogous effect in random-anisotropy spin
glasses, there are no uniform domains with sharp boundaries. The average distance between
disclinations in a typical Schlieren texture represents the size of different correlated regions
within which the nematic directorn is more or less aligned, and is a characteristic length scale
of the texture. The basic scaling observation, that at long scales the static random distortions
dominate over the dynamic thermal fluctuations, has been verified by rigorous theoretical
analysis and experimental studies of correlations and susceptibilities in a wide variety of
systems; see, for instance, [36]. The critical slowing down of all relaxation processes in systems
with a random, glass-like order is also a well-established universal phenomenon [37,38]. When
a polymer network is cross-linked in the isotropic state and then brought down in temperature
into the nematic phase, the misoriented anisotropic cross-links act as local quenched sources
of disorder for the nematic director field, in full analogy to magnetic impurities in spin glasses.
The resulting equilibrium texture is characterized by rapidly decaying correlation in the director
orientation, crudely

〈cosθ(r) cosθ(0)〉 ∼ exp[−r/ξ ]

imposing a length scaleξ that is often called the ‘domain size’. It is most important to
emphasize that this length scale is macroscopic, although the average distance between cross-
linking points could be measured as a few nanometres. The domain sizeξ is determined by
the balance between two opposite effects, the coarse-grained continuum random field of cross-
links, parametrized by its intensity0 depending to the cross-linking density, and the aligning
effect of Frank elasticity, with the constantK determined by the local nematic orderQ; very
approximatelyξ ' K2/0 and may reach several microns in magnitude [39].

The local coupling constant of the nematic director field and the anisotropic (e.g. rigid-
rod [34]) cross-link is not an easy parameter to evaluate from molecular models. The authors
of [34] have estimated such a constant asg ∼ (kBT /N)1Q, whereN is the number of
monomers on an average network strand,1 a measure of the geometric anisotropy (e.g. the
aspect ratio of a rod-like cross-linking molecule) andQ the local nematic order parameter
of the matrix. The quenched averaging of the random orientational field from all such local
sources produces an estimate for the coarse-grained intensity:

0 ' ncg2 ∝ n3
cQ

2

very crudely.
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(a) (b)

(c)

Figure 3. Polydomain–monodomain transition in LCE. (a) The mean orientation parameterS(σ),
equation (6), with experimental data on polysiloxane LCE [41]. (b) The light scattering image
with four peaks produced by the optical contrast between misoriented ‘domains’ viewed through
crossed polars. The angular position of the peaks corresponds to the correlation lengthξ ∼ 2µm,
slightly anisotropic in the direction of stretching. (c) The stress–strain curve for the transition in
polysiloxane side-chain LCE, which shows the soft plateau in the region of transition; the plateau
stress value is the critical stressσc in panel (a).

If one applied a strong external field to a randomly disordered system, e.g. a spin
glass, it would form long-range-order correlations and align along the field direction. The
corresponding polydomain–monodomain transition in LCE, induced by uniaxial stretching,
has been known of for a long time. Recent theoretical work [40] predicted a threshold stress
σc ∼ µQ due to energy barriers provided by elastic incompatibility between different domains.
An important observable quantity is the parameter of mean director orientation between the
domains,S = 〈 32 cos2 θ − 1

2〉, where the angleθ measures the deviation of a local director
n(r) (the principal axis of the local nematic order, the magnitude of which is measured byQ)
and, for instance, the direction of the imposed field. This mean orientation parameter shows
an unusual exponential variation aboveσc, approximately given by

S ' Q exp

[
−1

2

K3/2

ξ(σ − σc)1/2
]

(6)

with a small jump at the threshold. At a high stress, much larger than the threshold, the
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mean orientation parameter follows the asymptotic behaviourS ≈ Q exp[−K2/kT ξσ ] (at
σ � σc) and approaches its maximal value, equal to the local nematic order parameterQ.
More specific experiments have focused on this transition. It appears that the threshold stress is
very low in polyacrylate side-chain elastomers [13] with small backbone chain anisotropy and
is larger in polysiloxanes [41] and even more so in highly anisotropic main-chain LCE [17].
It also appears that, as the theory predicted, the transition proceeds via the reorientation of
different domains rather than the growth of correctly aligned domains. As we know, the director
rotation leads to a change in sample shape if the system is allowed to follow the low-energy
soft-deformation pathway and, therefore, it is not surprising to see the stress plateau during the
polydomain–monodomain transition; see figure 3(c). One should add that such a flat, almost
exactly soft plateau is not always seen in experiment; frequently the semi-soft slope ofσ(λ) in
the transition region is substantial. The reason for this is thought to be related to the effect of
domain wall localization [40] under strain, when the initially very broad non-uniform regions
of director variation become narrow (similarly to the case for the walls between stripe domains
discussed above) to allow the greater volume of the material to undergo soft deformation.
This localization may be strongly resisted in different materials depending on the rigidity of
cross-links and other possible impurities.

The concept of randomly quenched disorder and the analogy with spin glasses makes the
polydomain LCE an interesting physical system on its own. We shall see below that it has a
strong effect on low-frequency dynamic properties, causing a particularly slow relaxation of
mechanical stress.

5. Smectic elastomers

Smectic elastomers and gels, or permanently cross-linked networks of polymers that spon-
taneously form smectic or lamellar phases, are just as frequently found as the nematic ones.
There are a great variety of possible phases, combining the one-dimensional layered order with
various degrees of structure and alignment of mesogenic groups. We shall only consider the
simplest smectic order, appropriately called the ‘smectic-A’ or lamellar Lα phase, where the
uniaxial molecular anisotropy is coaxial with the layer normal. In other words, the nematic
director (which is the principal axis of optical birefringence) is locked perpendicular to the
smectic layers. Accordingly, if the deformation of layers occurs in such a way that a local tilt
is produced, it can be described either by the gradients of the scalar layer displacement field
u(r) or via the director rotationsδn. For instance, when the undistorted layer normal (and the
nematic directorn) is alongz one obtainsδnx = −∂u/∂x; δny = −∂u/∂y. A direct result
of the spontaneous layered structure is the penalty on layer compression. Again, if the layer
normal is chosen along thez-axis, the compression∂u/∂z is the measure of the local deviation
of the layer spacing from its equilibrium valued0. This elastic penalty has a consequence of
prohibiting the bend and twist deformations of the nematic director which acts as the local
layer normal. These considerations lead to the well-known expression for the elastic energy
density of a smectic phase, written in the form where the deformation is parametrized by the
local layer displacement fieldu(r) and consisting of just two terms: the layer compression
penalty and the splay deformation contributionK1(divn)2:

Fsm = 1

2
B

(
∂u

∂z

)2

+
1

2
K1

[(
∂2u

∂x2

)2

+

(
∂2u

∂y2

)2
]

(7)

where the undistorted layer normaln is taken alongz. By dimensional arguments, one always
expects to find the ratio

√
K/B ∼ d0, the smectic-layer spacing.
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When the smectic order is formed in an elastomer, one needs to examine the coupling
between layer deformationsu(r) and those of the rubbery network, the cross-linking points of
which are displaced by the vectorv(r). From the continuum point of view, the local symmetry
of smectic-A phase is exactly the same as that of a nematic (the additional translational
symmetry breaking leading to the compression penalty and the above constraints on possible
non-uniform deformations). Accordingly, the coupling terms fall into three categories. One
is due to the local point symmetry, equivalent to the nematic uniaxial order, and leads to
the two relative-rotation termsD1 andD2 that appear in the corresponding nematic energy
density (2). By analogy, we should also include the relative layer compression, with a third
phenomenological constantD0. Writing this in the specific frame aligned with the layer normal
‖z and explicitly presenting all strains, we have

Fint = 1

2
D0

(
εzz − ∂u

∂z

)2

+
1

2
D1

[(
vazx −

∂u

∂x

)2

+

(
vazy −

∂u

∂y

)2
]

− 1

2
D2

[
εzx

(
vazx −

∂u

∂x

)
+ εzy

(
vazy −

∂u

∂y

)]
. (8)

The third possible type of layer–network coupling is the penalty on relative translations along
z (layer normal), with a contribution to the local free-energy density∼3(u − vz)2 [42]; see
figure 4(a). This energy is associated with a barrier that a network cross-link should experience
if its displacementv(r) attempts to carry it through the smectic layer. The result of such
coupling would be the rigid locking of uniform layer rotations and compressions∇ku with the
corresponding uniform component of strain,vkz, of the rubbery network. The ‘mass’ provided
by the relative-translation coupling also leads to the suppression of thermal fluctuations and
the establishing of a long-range one-dimensional order of layers [43]. A precision x-ray
study of the scattering from smectic layers (the technique used with some success to analyse
the Landau–Peierls layer fluctuation spectrum in liquid smectic-A) has indeed indicated a
Bragg-like scattering intensityI (q) [44]. On the other hand, randomly distributed network
cross-links would present sources of quenched disorder for the layer displacement fieldu(r)

(see [45] for details), resulting in the equilibrium frustration of layer structure and affecting
the properties of phase transitions between nematic and smectic states. An indication of this
increased quenched disorder has been observed in another x-ray study of aligned monodomain
smectic elastomers [46]. Clearly, the issues of equilibrium order and alignment in smectic
networks are far from being resolved. There is obviously an attractive parallel with nematic
networks where the depression of thermal fluctuations (and the corresponding increase in local
order) is competing with the macroscopic quenched disorder introduced by random cross-links.
For instance, many features of the polydomain–monodomain transition have been found in a
smectic-A elastomer [47]. However, at times it might be difficult to unambiguously distinguish
between the nematic and smectic-A orders in elastomer samples.

Unlike the case for nematic elastomers, up to now there has been no adequate molecular-
statistical theory of lamellar networks. All one can say within the continuum phenomen-
ological approach is that the order of magnitude of elastic moduli in a rubbery network has to
beµ ∼ nckBT . However, this characteristically entropic rubber-elastic response should only
be related to locally two-dimensional deformations in the plane of smectic layers. Because the
polymer chains are not free to diffuse through the barriers presented by layers, the response
to the deformation along the layer normaln (‖z here) should be enthalpic, with the modulus
µ0 large, comparable to the smectic-layer compression constantB; cf. equation (2). Also,
remembering our discussion of soft elasticity when the nematic director is completely free
to relax, we should expect the effective shear modulusµ̃2 → 0. In smectic elastomers, the
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(a)

(b)

(c)

Figure 4. Deformations in smectic elastomers. (a) A schematic representation of layers and
the polymer backbone between two cross-links. The chain (shown as a thick line) performs a
random walk in the layer plane, but jumps rapidly between layers, forming fully extended strands
(layer-forming mesogenic groups are, of course, attached to the backbone which is not shown
in the drawing to preserve readability). The deformation of layersu(r) is only measured along
the undistorted layer normal; the drawing illustrates the relative-translation coupling∼(u− vz)2.
(b) Stretching the monodomain smectic elastomer in the layer plane preserves the layer integrity but
does not allow the transverse contraction (necking). A selected network strand between two cross-
links is shown again to illustrate the 2D random-walk property. (c) Stretching along the layer normal
causes a strong elastic resistance and results in layer instabilities, initially—Helfrich–Hurault-type
undulations.

director cannot completely relieve both network and layer strain. So we could expect the
renormalized constant̃µ2 to be small but non-zero, proportional to the degree of smectic order,
measured by the order parameter amplitude|ψ |, at least near the nematic–smectic transition.

Experimental observations of deformations and ordering in smectic elastomers seem to
support the idea of two-dimensional entropic rubber elasticity combined with a rigid response
along the layer normal from the chain segments constrained between the layers. The strong
effect of network shears of the uniform layer rotation has been reported [48] and used to
produce aligned monodomain smectic rubbers. Extension in the plane of the layers (figure 4(b))
is resisted by the low elastic modulus∼µ, but the transverse contraction which is usual for
incompressible rubbers does not take place [22]. The layered network can be stretched by a
large amount, still preserving its layer integrity and alignment (but, of course, the sample strip
has to become thinner if one is to observe the incompressibility constraint). In contrast, the
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extension along the layer normal is resisted by a very high modulus, several orders of magnitude
greater thanµ. The transverse sample contraction and necking is very pronounced [22]. In
fact, the uniform layer system cannot be sustained for such deformation geometry, and highly
scattering layer undulation textures result [49].

Another interesting development in this area was the preparation and study of physical
properties of free-standing thin films of smectic elastomer. In this case a slightly more
complex system was used, probably in view of possible electromechanical applications. The
ferroelectric smectic-C∗ polymer has been stretched on a frame into a well-aligned film only
several layers thick and then cross-linked by UV radiation [50]. The elastic thin film was then
studied by optical and atomic-force microscopy techniques [51], in its natural state and on
stretching, with varying cross-linking type and density to examine its mechanical properties
and with changing temperature to explore the phase transitions. One particularly unusual
result of that work was the effect of increasing surface roughness on stretching an initially
smooth film with layers perfectly aligned parallel to its surface. As a possible explanation,
one might imagine a deformation-induced effect of local rotation of rod-like mesogenic cross-
links, generating an effective polydomain texture in the smectic tilt angle and, thus, the local
film thickness,〈[h(r)− h(0)]2〉 ' r/ξ , similar to that described in section 4.

6. Dynamics and relaxation

The research into dynamical properties and relaxation in LCE has begun only recently.
Traditional experimental techniques for studying the complex modulus (frequently called in
this contextG(ω) = G′+iG′′) include that based on an oscillating dynamic–mechanical (DMA)
rheometer, as was used in [52], which examined the frequency range from 10−2 to 104 Hz as
a function of temperature. The authors of [52] observed a marked increase in resistance near
and after the nematic–smectic-A transition. However, no particular difference in rheological
properties between the nematic and isotropic phases has been seen, and the time–temperature
superposition well known for ordinary polymers and rubbers was found to be valid. This is
surprising, if we recall the distinctly non-linear elastic behaviour, as shown, for instance, in
figure 2(c), and the effect of soft elasticity.

More recent work leads to the question of whether a frequency as low as 10−2 Hz is, in fact,
low enough for one to observe the effects specific to LCE. The study of stress relaxation [23]
in main-chain LCE with a possibly smectic-A order, during the polydomain–monodomain
transition, has shown a very slow equilibration of stress after a small strain increment. Within
the region examined of up to 6000 s, the relaxation has been fitted to a stretched-exponential
form∼ exp(−t/τ )0.4. Such a type of relaxation is characteristic of many other systems with
random glass-like order (or rather disorder) and indicates a broad distribution of relaxation
times. Somewhat in contrast to that work, another study of long-time (up to 106 s) stress
relaxation under very similar conditions (although for a side-chain LCE) [53] has reported that
after a characteristic crossover timet∗ ∼ 3000 s, the response is following a much slower,
inverse-logarithmic law:σ(t) ∼ [1 + ln(t/t∗)]−1. An associated theoretical model has been
able to relate the critical self-retardation to the random-disorder properties of liquid-crystalline
order in the elastic network. The model provides a rate constant vanishing with an essential
singularity when the equilibrium is approached, due to the cooperative mechanical barriers to
each domain’s rotation. The resulting kinetic equation for stress relaxation, having the form
σ̇ = −me−u/σ σ 3, gives a solution which at short times resembles the power lawt−1/2 and
at long times can be approximately interpolated as an inverse-logarithmic function, with the
crossover timet∗ = (mu2)−1. Both regimes correspond well to experimental results [53].
This type of self-retarding behaviour could be universal across randomly disordered systems
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where, as in nematic elastomers, the relevant order parameter is coupled to the elastic modes:
the mechanical compatibility requires cooperativity of elastic barriers.

At present, the question of relaxation dynamics and kinetic effects in LCE is far from being
understood. The pilot research has shown that here, as in their static properties, LCE show
many unusual effects. There are new experimental techniques available to examine dynamic
processes on all scales, from individual monomers to macroscopic regions of correlated director
orientation, which should provide much-needed experimental information. An example of such
a multi-scale approach is the recentin vivoFTIR study of motion and relaxation of individual
mesogenic groups when a LCE sample was macroscopically deformed [54]. The interest in the
dynamic properties of anisotropic rubbers and gels has been further promoted by the recently
proposed concept of an artificial muscle [55], where the mechanical work is done by an elas-
tomer cycling through its nematic transition (driven by the variation of temperature or chemical
composition) and accordingly changing its equilibrium shape,λm in figures 1(a) and 1(b).

7. Piezoelectricity and electric field effects

The piezoelectric effect and non-linear optical properties of elastomers with a chiral smectic-
C∗ order (the ferroelectric liquid-crystalline elastomers, FLCE) have been studied with some
intensity for several years now. After permanently monodomain (fixed by cross-linking) free-
standing samples of FLCE were prepared by the Finkelmann and Zentel groups [50, 56],
several useful experiments targeting various electromechanical and electro-optical properties—
in particular, the piezoelectricity and the non-linear optical response—have been reported in
recent years [57–61]. Clearly, the prospect of important applications will continue to drive
this work. In this short review we will concentrate on the analogous effect in chiral nematic
LCE which do not possess a spontaneous polarization.

With the much higher symmetry of nematic elastomers (the point group D∞ in a chiral
material, in contrast to C2, plus the translational effect of layers, in ferroelectric smectic-C∗),
there is a real possibility of identifying the microscopic origins of piezoelectricity in amor-
phous polymers or indeed elastomers, if one aims to have an equilibrium effect in a stress-
resistant material. The piezoelectric effect in a uniform chiral nematic LCE has been described
phenomenologically [62] and, very recently, by a fully non-linear microscopic theory [63].
All experimental research so far has concentrated on the helically twisted cholesteric elas-
tomers [24,64,65]. However, the cholesteric texture under the required shear deformation [66]
(figure 5(a)) will produce highly non-uniform distortions giving rise to the well-understood

(a) (b) (c)

Figure 5. Piezoelectric effects in LCE. (a) Polarization induced by the shear applied to helically
twisted textures (the flexoelectric effect). (b) A schematic illustration of the chiral geometry that
produces a polarization alongz due to the shear and anisotropy axis in thex–y plane. (c) Polarization
induced by shearing a uniformly aligned chiral nematic, with the director along either thex-axis
or they-axis (the true piezoelectric effectP = γ [n× (ε · n)]).



R254 E M Terentjev

flexoelectric effect and masking the possible chiral piezoelectricity.
The uniform linear piezoelectricity, i.e. the polarization induced by a uniform strain—see

figure 5(c) (with the small deformationε = λ − 1), is unknown in completely amorphous
polymers and rubbers. Even the famous PVDF polymer-based piezoelectric has a response
due to crystalline regions affected by deformation. The molecular theory [63] has examined the
effect of chirality in the molecular structure of chain monomers and the bias in their short-axis
alignment when the chains are stretched at an angle to the average nematic directorn. If the
monomers possess a transverse dipole moment, this bias leads to macroscopic polarization:

P ' −1

2
(nc1)ε : (λT · `−1

θ
· λ · `

0
). (9)

This expression involves the full Cauchy strain tensorλ and, therefore, can describe large
deformations of a chiral nematic rubber. When shear deformations are small, the linear
approximation of (9) gives, for a symmetric shear,

P ' γ [n× (ε · n)]
with the linear coefficient

γ = ∂P/∂ε ≈ −1

2
nc1(`

2
‖ − `2

⊥)/`‖`⊥.

Herenc is the number of network strands per unit volume (the cross-linking density) and
the parameter1 is the measure of monomer chirality with the transverse dipole moment.
Piezoelectricity in amorphous rubbers is interesting not only from the point of view of the
fundamental physics of chiral random walks and symmetry breaking. On the practical side,
due to the rubber modulus being much lower than that for ordinary solid piezoelectrics
(typically µ ∼ 105 J m−3), the relevant coefficientd = ∂P/∂σ = γ /µ is much higher
than the corresponding response to stress in, for instance, quartz or PVDF. The corresponding
low mechanical impedance should make the piezoelectric rubber attractive for many energy-
transducing applications.

Apart from the piezoelectricity, molecular chirality of polymer chains cross-linked into
the elastic network presents many fundamental challenges on its own. In linear elasticity, the
chirality of the medium does not have any effect on the mechanical response. However, in
elastomers and gels the regime of high deformations and non-linear stress–strain relations is
readily accessible; liquid-crystalline elastomers are even more characteristic in this way, due
to their soft elasticity. Chiral properties of polymers should then show themselves not only
in the optical activity, but also, more curiously, in mechanical properties. There has been
very little research on this subject, apart form a very interesting study showing the effect of
chiral imprinting [67, 68], when the network of non-chiral polymers is cross-linked in the
presence of a chiral solvent and then the solvent is removed from the system completely.
After this, no molecularly chiral object is left, but the elastomer shows distinctly chiral
macroscopic properties, presumably because a specific topology has been imprinted in the
cross-link distribution.

8. A look to the future

This review examines the most recent and relevant findings about a new class of materials—
liquid-crystalline elastomers and gels. Nematic rubbers have already proved themselves an
unusual and exciting system, with a number of unique optical and mechanical properties—
indeed a real example of the Cosserat media with couple-stress elasticity. Polymer networks
with a smectic order are an equally provocative system, promising new physical properties.
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The basic molecular theory of nematic rubber appears to be exceptionally simple in its
foundation and does not involve any model parameters apart from the backbone polymer chain
anisotropỳ ‖/`⊥, which can be independently measured. This represents a great advantage
over the situation for many other soft condensed matter systems requiring complicated, some-
times ambiguous theoretical approaches. Of course, for many real situations and materials
one finds a need to look deeper into the microscopic properties; an example of this is pro-
vided by the ‘semi-softness’ of nematic networks. Most of these systems are characterized
by non-uniform deformations: even in the simplest experimental set-up a large portion of the
sample near the clamps is subjected to non-uniform strains and, therefore, responds with a
non-uniform director field.

Looking to the future, many challenging and fundamental problems in this field are still
outstanding. Smectic and lamellar elastomers and gels have to be studied in much greater
detail, theoretically and experimentally, to underpin their dramatically anisotropic and non-
linear mechanical properties combining a two-dimensional rubber-elastic response and solid-
like properties in the third direction. The field of relaxation and dynamics in rubbery networks,
although not young by any means, is still not offering an unambiguous physical picture of stress
relaxation. Adding the liquid-crystalline order, we find an additional (director) field undergoing
its own relaxation process and coupled to that of an elastic network. In the particular case of
polydomain (i.e. randomly disordered in equilibrium) elastomers, we can identify a hierarchical
sequence of physical processes in the underlying network (above itsTg) and the superimposed
glass-like nematic order. This leads to a particularly slow relaxation, but much remains to be
done to understand the physics of such complex systems.

The general problem of dynamic mechanical properties, rheology and relaxation in
Cosserat-like incompressible solids, also characterized by the effect of soft elasticity, brings
to mind a number of possible applications. An example would be the selective attenuation of
certain acoustic waves, with polarization and propagation direction satisfying the condition for
softness, essentially leading to an acoustic filtering system. Another example of application of
soft elasticity, also related to the problem of relaxation, is the damping of shear vibrations in
an engineering component when its surface is covered by a layer of nematic or smectic rubber,
particularly aligned to allow the director rotation and softness.

Other very important area of applications is based on polarizational properties of materials
with chirality. Most non-linear optical applications (which have a great technological potential)
deal with elastomers in the ferroelectric smectic-C∗ phase. The low symmetry (in particular,
chirality) and large spontaneous polarization of C∗ smectics have a strong effect on the
underlying elastic network, and vice versa. This also harks back to the general problem
of mechanical properties of smectic rubbers and gels. In conclusion, after the initial period
of exploration and material synthesis, liquid-crystalline elastomers, in all their variety, now
present themselves as an exciting area for both fundamental research and for technology.
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